GitHub Copilot Certification
Introduction
Comment driven Development
Leverage descriptive comments to auto-generate boilerplate classes, domain-specific methods, and tests in Python using GitHub Copilot. This workflow speeds up development and enforces consistency across your codebase.
Table of Contents
- Overview
- Prerequisites
- Generate a Python Class from Comments
- Extend with Domain-Specific Methods
- Comment-Driven Function Generation
- Auto-Generate Unit Tests
- Resources & References
Overview
Comment-driven development (CDD) lets you write plain-English comments that describe the code you need. GitHub Copilot reads these comments and generates the corresponding implementation, including:
- Classes with type hints and validation
- Data-processing methods
- Standalone functions
pytest
unit tests
CDD reduces boilerplate and keeps your focus on business logic.
Prerequisites
Before you begin, ensure the following are installed:
Tool | Purpose | Install Command |
---|---|---|
GitHub Copilot extension | AI code completion | Available via VS Code Marketplace |
Python ≥ 3.8 | Language runtime | https://www.python.org/downloads/ |
pandas | Data processing | pip install pandas |
pytest | Unit testing framework | pip install pytest |
Generate a Python Class from Comments
Open main.py
and write a high-level description of the class you want:
# Create an Employee class with name, age, and salary attributes
# Include type hints and validation for each field
Note
GitHub Copilot will trigger on typing patterns like def
or class
. Press Tab
(or your configured shortcut) to accept the suggestion.
After accepting Copilot’s suggestion, your file should look like this:
import pandas as pd
import numpy as np
class Employee:
def __init__(self, name: str, age: int, salary: float):
self.name = name
self.age = age
self.salary = salary
@property
def name(self) -> str:
return self._name
@name.setter
def name(self, value: str):
if not isinstance(value, str):
raise TypeError("Name must be a string")
self._name = value
@property
def age(self) -> int:
return self._age
@age.setter
def age(self, value: int):
if not isinstance(value, int):
raise TypeError("Age must be an integer")
self._age = value
@property
def salary(self) -> float:
return self._salary
@salary.setter
def salary(self, value: float):
if not isinstance(value, (int, float)):
raise TypeError("Salary must be a number")
self._salary = value
Instantiate and Verify
# main.py
employee = Employee("Alice", 30, 50000.0)
print(employee.name) # Alice
print(employee.age) # 30
print(employee.salary) # 50000.0
(venv) $ python main.py
Alice
30
50000.0
Extend with Domain-Specific Methods
You can drive Copilot to add data-processing methods by writing comments in the class. For example, to analyze stock data:
# create a method that processes stock market data
# calculate moving averages, volatility, and trading signals
# handle missing data and outliers
def process_stock_data(self, data: pd.DataFrame) -> pd.DataFrame:
# calculate moving averages
data['SMA_50'] = data['Close'].rolling(window=50).mean()
data['SMA_200'] = data['Close'].rolling(window=200).mean()
# calculate volatility
data['daily_return'] = data['Close'].pct_change()
data['volatility'] = data['daily_return'].rolling(window=50).std()
# generate signals
data['signal'] = 0
data.loc[data['SMA_50'] > data['SMA_200'], 'signal'] = 1
data.loc[data['SMA_50'] < data['SMA_200'], 'signal'] = -1
# handle missing values
data.fillna(method='ffill', inplace=True)
return data
Add this directly under the Employee
class. Running main.py
again confirms existing behavior is preserved:
(venv) $ python main.py
Alice
30
50000.0
Comment-Driven Function Generation
Standalone functions are just as easy. In main.py
, add:
# Validate trading parameters before order execution
Copilot generates:
def validate_trading_parameters(price: float, volume: int, symbol: str) -> bool:
"""Validate trading parameters before order execution"""
if not isinstance(price, (int, float)):
raise TypeError("Price must be a number")
if not isinstance(volume, int):
raise TypeError("Volume must be an integer")
if not isinstance(symbol, str):
raise TypeError("Symbol must be a string")
if price <= 0:
raise ValueError("Price must be positive")
if volume <= 0:
raise ValueError("Volume must be positive")
return True
Auto-Generate Unit Tests
Create test_main.py
and write test-descriptive comments:
# test process_stock_data function
Copilot suggests:
import pytest
import pandas as pd
import main
def test_process_stock_data():
data = pd.DataFrame({'Close': list(range(1, 201))})
emp = main.Employee("Alice", 30, 50000.0)
processed = emp.process_stock_data(data.copy())
assert 'SMA_50' in processed
assert 'SMA_200' in processed
assert 'volatility' in processed
assert 'signal' in processed
assert processed['signal'].iloc[-1] == 1
def test_validate_trading_parameters_success():
assert main.validate_trading_parameters(100.5, 1000, 'AAPL') is True
@pytest.mark.parametrize("price,volume,symbol,exception", [
(-1, 100, 'AAPL', ValueError),
(100.5, 0, 'AAPL', ValueError),
(100.5, 1000, 123, TypeError),
])
def test_validate_trading_parameters_errors(price, volume, symbol, exception):
with pytest.raises(exception):
main.validate_trading_parameters(price, volume, symbol)
Run tests:
(venv) $ pytest -q
Warning
Always review generated code for edge cases and security considerations—AI suggestions may not cover every scenario.
Resources & References
Watch Video
Watch video content