Introduction to OpenAI
Text Generation
Practical Applications
Explore real-world use cases for text generation with OpenAI’s GPT-4. Each example demonstrates how prompt engineering and model parameters influence the output. We cover:
- Blog post creation
- Summarization
- Conversational agents for customer support
- Code explanations and comments
- Creative writing
- Language translation
All snippets use the Chat Completion API for clarity and reproducibility.
Note
Adjust temperature
(creativity) and max_tokens
(length) to fine-tune your results. Lower temperature
yields deterministic output, while higher values increase randomness.
Overview Table
Use Case | Description | Example Parameter Highlights |
---|---|---|
Blog Post Generation | Drafts articles or sections | temperature=0.7 , max_tokens=150 |
Summarization | Condenses long text into concise summaries | temperature=0.3 , max_tokens=100 |
Customer Support Agent | Automated, professional responses to inquiries | temperature=0.3 , system prompt setup |
Code Explanations & Comments | Generates detailed code walkthroughs | temperature=0.3 , max_tokens=150 |
Creative Writing | Short stories, poems, or dialogue | temperature=0.9 , max_tokens=200 |
Language Translation | Translates between specified languages | default temperature, max_tokens=60 |
1. Blog Post Generation
Generate full articles or individual sections by providing a clear prompt.
import openai
def generate_blog_intro():
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{
"role": "user",
"content": "Write a blog post introduction about the benefits of remote work for companies and employees."
}],
max_tokens=150,
temperature=0.7
)
return response.choices[0].message.content
print(generate_blog_intro())
2. Text Summarization
Condense research papers, articles, or reports into concise summaries:
import openai
def summarize_article(article_text):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{
"role": "user",
"content": f"Summarize this article on blockchain technology:\n\n{article_text}"
}],
max_tokens=100,
temperature=0.3
)
return response.choices[0].message.content
article_text = (
"Blockchain technology is a decentralized digital ledger that records "
"transactions across many computers to ensure security and transparency."
)
print(summarize_article(article_text))
3. Conversational Agent for Customer Support
Build a polite, professional support agent that handles common inquiries:
import openai
def customer_support_response():
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are a helpful customer support agent."},
{"role": "user", "content": "A customer requests a refund for a defective product. Draft a professional response."}
],
max_tokens=100,
temperature=0.3
)
return response.choices[0].message.content
print(customer_support_response())
Warning
Never expose your API key in public repositories or client-side code. Use environment variables or a secrets manager.
4. Code Explanations and Comments
Automatically generate inline comments or detailed explanations for any code snippet:
import openai
def explain_code(code_snippet):
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{
"role": "user",
"content": f"Explain the following Python function:\n\n{code_snippet}"
}],
max_tokens=150,
temperature=0.3
)
return response.choices[0].message.content
code_snippet = '''
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
'''
print(explain_code(code_snippet))
5. Creative Writing
Use GPT-4 to craft short stories, poems, or dialogues. Increase temperature
for more imaginative output:
import openai
def short_story():
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{
"role": "user",
"content": "Write a short story about a robot learning to love music."
}],
max_tokens=200,
temperature=0.9
)
return response.choices[0].message.content
print(short_story())
6. Language Translation
Translate text between languages by specifying the source and target:
import openai
def translate_text():
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{
"role": "user",
"content": "Translate this sentence from English to French: 'I hope you have a wonderful day.'"
}],
max_tokens=60
)
return response.choices[0].message.content
print(translate_text())
References
Watch Video
Watch video content